

0040-4039(94)01797-2

A Short Synthesis of (±)-Tortuosamine

R. Richard Goehring[†]

Department of Chemistry
North Carolina State University, Raleigh, NC 27695-8204

Key Words: Intramolecular SRN1, Sceletium Alkaloid, (±)-Tortuosamine.

Abstract: A four-step synthesis of (\pm) -tortuosamine (1) is described. The key ring closure was an intramolecular $S_{RN}1$ reaction between a ketone enolate and a 2-halopyridine.

Tortuosamine (1) is one of the Sceletium alkaloids isolated in 1971.¹ To date there have been three syntheses of 1 reported in the literature, all of which involve fabrication of the pyridine ring.² Herein, we would like to describe our work in this area which has lead to an efficient synthesis of this natural product employing a completely different strategy.

Our synthesis was guided by our continuing interest in intramolecular $S_{RN}1$ reactions.³ Thus, addition of the anion of 3,4-dimethoxyphenylacetone (2) (LDA, THF, -23°C) to a solution of the chloroamine free-base 3^4 gave the aminoketone 4 in 64% yield.⁵ Alkylation of the anion of 4 (LDA, THF, -78°C) with 2-bromo-3-bromomethylpyridine (5)⁶ gave the pyridylketone 6 in 83% yield, providing us with the substrate for our intramolecular $S_{RN}1$ reaction.^{7,8} Treatment of 6 with 2.5 equivalents of LDA (THF, 0°C) and irradiation^{9,10} effected cyclization to afford the product (as its enolate 7) which was trapped by reaction with N-phenyltriflimide to give the vinyl triflate 8 in 59% yield. Hydrogenation reduced the vinyl triflate to the saturated hydrocarbon with concomitant removal of the benzyl group to give a 91% yield of (\pm)-tortuosamine (1) whose spectral data were in agreement with those reported in the literature.^{2a}

In summary, we have completed a short, photochemical-based synthesis of (\pm) -tortuosamine (1). This is one of a growing number of applications of the intramolecular $S_{RN}1$ reaction to the synthesis of natural products. 11

[†] Present Address: Scios Nova Inc., 6200 Freeport Centre, Baltimore, MD 21224-6522.

Acknowledgement. We thank the Faculty Research and Professional Development Fund (North Carolina State University) for financial support and Professor D.L. Comins for the use of equipment and laboratory space.

References and Notes.

Snyckers, F.O.; Strelow, F.; Wiechers, A. <u>I. Chem. Soc.</u> Chem. Comm. 1971, 1467.
(a) Koyama, J.; Sugita, T.; Suzuta, Y.; Irie, H. <u>Heterocycles</u> 1981, 16, 969. (b) Koyama, J.; Sugita, T.; Tagahara, K.; Suzuta, Y.; Irie, H. <u>Heterocycles</u> 1984, 22, 1973. (c) Okatani, T.; Koyama, J.; Tagahara, K. Heterocycles 1989, 29, 1809.

(a) Wolfe, J.F.; Sleevi, M.C.; Goehring, R.R. <u>J. Amer. Chem. Soc.</u> 1980, 102, 3646. (b) Goehring, R.R.; Sachdeva, Y.P.; Pisipati, J.S.; Sleevi, M.C.; Wolfe, J.F. <u>I. Amer. Chem. Soc.</u> 1985, 107, 435. (c) Goehring, R.R. Tetrahedron Lett. 1992, 33, 6045. Chloroamine free-base 3 was prepared in situ by neutralization of the HCl salt (Aldrich) with LDA (THF,

-78°C).

5. All yields refer to chromatographically pure compounds for which satisfactory ¹H and ¹³C NMR, IR and combustion analyses were obtained.

Prepared from 2-bromopyridine (i. LDA, formaldehyde; ii. PBr3). See also: Rebek, Jr., J.; Costello, T.; Wattley, R. J. Amer. Chem. Soc. 1985, 107, 7487.

7. For the intermolecular S_{RN}1 reaction of halopyridines with ketone enolates, see: Komin, A.P.; Wolfe, J.F. J. Org. Chem. 1977, 42, 2481.

For the intramolecular S_{RN}1 reaction of carboaromatic halides with ketone enolates, see: Semmelhack, M.F.; Bargar, T. J. Amer. Chem. Soc. 1980, 102, 7765, and references cited therein.

Irradiation was performed with a Hanovia 450-W high-pressure Hg-vapor lamp.

10. When the cyclization reaction was run in the dark or in the presence of a catalytic amount of di-tert-butyl nitroxide, only trace amounts of product were detected by ¹H NMR.

For recent examples of the application of intramolecular S_{RN}1 reactions to the synthesis of natural products, see: (a) Ref. 3c. (b) Staskun, B.; Wolfe, J.F. S. Afr. J. Chem. 1992, 45, 5 (Chem. Abstr. 1992, 117, 90001n).
 (c) Martin, S.F.; Liras, S. J. Amer. Chem. Soc. 1993, 115, 10450.